New exact traveling wave solutions to the (2+1)-dimensional Chiral nonlinear Schrödinger equation

نویسندگان

چکیده

In this research work, we successfully construct various kinds of exact traveling wave solutions such as trigonometric like, singular and periodic well hyperbolic to the (2+1)-dimensional Chiral nonlinear Schröginger equation (CNLSE) which is used a governing discuss in quantum field theory. The mechanisms are obtain these extended rational sine-cosine/sinh-cosh constraint conditions for existence valid also given. attained results exhibit that proposed techniques significant addition exploring several types partial differential equations applied sciences. Moreover, 3D, 2D-polar contour profiles depicted showing physical behavior reported by setting suitable values unknown parameters.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

some new exact traveling wave solutions one dimensional modified complex ginzburg- landau equation

‎in this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear pdes in mathmatical physics; namely the one-‎dimensional modified complex ginzburg-landau equation by using the $ (g^{'}/g) $ expansion method‎, homogeneous balance method, extended f-expansion method‎. ‎by ‎using homogeneous balance principle and the extended f-expansion, more periodic wave solutions expres...

متن کامل

Direct search for exact solutions to the nonlinear Schrödinger equation

A five-dimensional symmetry algebra consisting of Lie point symmetries is firstly computed for the nonlinear Schrödinger equation, which, together with a reflection invariance, generates two five-parameter solution groups. Three ansätze of transformations are secondly analyzed and used to construct exact solutions to the nonlinear Schrödinger equation. Various examples of exact solutions with c...

متن کامل

New Exact traveling wave solutions of the (2+1) dimensional Zakharov-Kuznetsov (ZK) equation

The repeated homogeneous balance method is used to construct new exact traveling wave solutions of the (2+1) dimensional ZakharovKuznetsov (ZK) equation, in which the homogeneous balance method is applied to solve the Riccati equation and the reduced nonlinear ordinary differential equation, respectively. Many new exact traveling wave solutions are successfully obtained. This method is straight...

متن کامل

Classifying the hierarchy of nonlinear-Schrödinger-equation rogue-wave solutions.

We present a systematic classification for higher-order rogue-wave solutions of the nonlinear Schrödinger equation, constructed as the nonlinear superposition of first-order breathers via the recursive Darboux transformation scheme. This hierarchy is subdivided into structures that exhibit varying degrees of radial symmetry, all arising from independent degrees of freedom associated with physic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Modelling of Natural Phenomena

سال: 2021

ISSN: ['1760-6101', '0973-5348']

DOI: https://doi.org/10.1051/mmnp/2021001